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Mechanism of clerosterol biosynthesis in Ajuga hairy roots:
stereochemistry of C-28 methylation of 24-methylene sterol
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Abstract—Biosynthesis of clerosterol, (24S)-ethylcholesta-5,25-dien-3�-ol (1), involves transfer of the methyl group from S-adeno-
sylmethionine to the C-28 position of a 24-methylene-sterol precursor. The resulting C-24 cationic species undergoes migration of
hydrogen from C-25 to C-24, followed by deprotonation from C-26 to form 1. We have now investigated the steric course of the
methylation in hairy roots of Ajuga reptans var. atropurpurea. Feeding of [28E-2H]- and [28Z-2H]-24-methylenecholesterols and
2H NMR analysis of clionasterol obtained by partial hydrogenation of the biosynthesized clerosterol have revealed that the
methylation takes place from the 28-si face. © 2002 Published by Elsevier Science Ltd.

In plants, C29-sterols are biosynthesized via methylation
of C28-sterols having a �24(28)-double bond. In most
higher plants, a C-24 cationic intermediate arising from
the methylation would be neutralized by elimination of
C-28 hydrogen to form a C29-�24(28)-sterol. We have
recently reported that this methylation reaction pro-
ceeds in a ‘trans ’ mechanism, although the face of the
transfer of the methyl group remains undefined.1 In
some families of plants and green algae, the C-24
cationic intermediate is neutralized by the migration of
hydrogen from C-25 to C-24 with concomitant elimina-
tion of C-26 hydrogen to yield a 24�-ethyl-�25-sterol
such as clerosterol (1). The subsequent reduction of �25

yields a 24�-ethyl sterol such as 22-dihydrochondrillas-
terol in Cucurbitaceae2 and clionasterol in algae.3 Ajuga
genus (Laviatae) is known to have clerosterol and
22-dehydroclerosterol.4 We previously reported the
mechanism of sterol side-chain biosynthesis in hairy
roots of Ajuga reptans var. atropurpurea.5 The C-24
hydrogen of desmosterol was shown to reside at the
C-24 position of 1 in the hairy roots. Further, it was
established that the isopropylidene (E) (derived from
C-2 of mevalonate) and (Z) (derived from C-6 of
mevalonate) methyl groups of desmosterol become
stereospecifically olefinic methyl and exomethylene car-
bons, respectively, via (pro-S)- and (pro-R)-methyls at

Scheme 1. Two possible steric courses of the methylation of 24-methylene-sterol. � designates carbon atoms derived from C-2
of mevalomate.
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C-25 of 24-methylenecholesterol (2). This implies that
migration of 25-H has to occur from the 24-re-face of
the �24(28)-double bond, as depicted in Scheme 1.6 We have
now elucidated the steric course (path a or b in Scheme
1) of the transfer of the methyl group from S-adenosyl-
methionine.

To elucidate the steric course in question, it is essential
to differentiate the C-28 methylene hydrogens of 1. In our
previous work, the differentiation of the C-28 methylene
hydrogens of sitosterol (C-24 epimer of clionasterol) was
uniquely achieved.7 Thus, we initially focused on assign-
ing the C-28 methylene hydrogens of clionasterol (3)
instead of 2, since 2 could be readily converted into 3 by
selective hydrogenation.8 The methylene protons of 3
were found to be much more diagnostic from each other
in the 1H NMR spectrum than those (� 1.24 for pro-R,
� 1.28 for pro-S) of sitosterol, as evidenced by the HMQC
spectrum of 3 (ca. � 1.11 and 1.31). In order to assign
the 1H chemical shifts of the methylene hydrogens,
[28-pro-R-2H]- and [28-pro-S-2H]-clionasterols were pre-
pared as shown in Scheme 2.

The known (24S,28S)-6�-methoxy-3,5-cyclo-5�-stigmas-
tan-28-ol (4a)7,9 was converted into mesylate which was
then reduced by Super-deuteride to give [28-pro-R-2H]-
cycloether. The use of Super-deuteride was found to be
superior to NaBD4, since the formation of olefinic
byproducts was much reduced.7 The ether was converted
to [28-pro-R-2H]-clionasterol (3a)10 in a standard acidic
treatment. Starting from the epimeric (28R)-28-ol (4b),7,11

there obtained [28-pro-S-2H]-clionasterol (3b).12 The 2H
NMR spectra of these reference samples showed signals
at � 1.32 for 3a and 1.14 for 3b, as illustrated in Fig. 1.

Scheme 2. Synthesis of [28-pro-R-2H]- and [28-pro-S-2H]-
clionasterols (3a and 3b). Reagents and conditions : (i) MsCl, Py;
(ii) Super-deuteride, THF; mCPBA (separation of olefinic
byproducts as epoxides), 65–70% for two steps; (iii) p-TsOH,
aq. dioxane, 85%.

Hence, pro-R and pro-S hydrogens at C-28 of 3 were
unequivocally assigned to the signals of � 1.31 and 1.11,
respectively.

The requisite [28E-2H]- (1a) and [28Z-2H]- (1b) 24-
methylenecholesterols were synthesized as described pre-
viously.1 Compound 1a (32 mg) was fed to Ajuga hairy
roots (four 500 ml flasks each containing 250 ml of MS
medium) as described previously.5 Extraction and purifi-
cation of the sterol fraction furnished 1.6 mg of cleros-
terol. This was hydrogenated in the presence of Pt/C to
give clionasterol in good yield. Compound 1b was
similarly fed to Ajuga hairy roots and the biosynthesized
clerosterol was converted to clionasterol. Fig. 2 illustrates
the 2H NMR spectra of the clionasterol samples. The
spectra A and B are essentially identical to those of
[28-pro-R-2H]- and [28-pro-S-2H]-clionasterols, respec-
tively. This implies that 28E- and 28Z-hydrogens of 1

Figure 1. 2H NMR spectra (61 MHz, CHCl3) of [28-pro-R-2H]-clionasterol 3a (A) and [28-pro-S-2H]-clionasterol 3b (B).
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Figure 2. 2H NMR spectra (61 MHz, CHCl3) of clionasterol. (A) 3 derived from clerosterol biosynthesized from 1a. (B) 3 derived
from clerosterol biosynthesized from 1b.

become C-28 pro-R- and pro-S-hydrogens, respectively,
of 2.

In conclusion, it has been established that the transfer of
the methyl group from S-adenosylmethionine to C28-
�24(28) sterol takes place from the 28-si face (path b in
Scheme 1) in Ajuga hairy roots. This work is the first to
determine the steric course of the methyl transfer in the
conversion of C28- to C29-sterol. In Ajuga hairy roots, the
transfer of the methyl group in the conversion of C27- to
C28-sterol, e.g. from desmosterol to codisterol (24�-
methyl-�25-cholesterol), proceeds from the 24-si face of
�24(25) double bond.5 Therefore, it appears that the methyl
group of S-adenosylmethionine may be held in the
backside of the �24(25) and �24(28) double bond in both
methyl transfer reactions.
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