

Tetrahedron Letters 43 (2002) 5479-5481

Mechanism of clerosterol biosynthesis in *Ajuga* hairy roots: stereochemistry of C-28 methylation of 24-methylene sterol

Takeshi Koami, Kiyoshi Ohyama and Yoshinori Fujimoto*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan Received 8 April 2002; revised 27 May 2002; accepted 31 May 2002

Abstract—Biosynthesis of clerosterol, (24*S*)-ethylcholesta-5,25-dien-3 β -ol (1), involves transfer of the methyl group from *S*-adenosylmethionine to the C-28 position of a 24-methylene-sterol precursor. The resulting C-24 cationic species undergoes migration of hydrogen from C-25 to C-24, followed by deprotonation from C-26 to form 1. We have now investigated the steric course of the methylation in hairy roots of *Ajuga reptans* var. *atropurpurea*. Feeding of [28*E*-²H]- and [28*Z*-²H]-24-methylenecholesterols and ²H NMR analysis of clionasterol obtained by partial hydrogenation of the biosynthesized clerosterol have revealed that the methylation takes place from the 28-*si* face. © 2002 Published by Elsevier Science Ltd.

In plants, C₂₉-sterols are biosynthesized via methylation of C₂₈-sterols having a $\Delta^{24(28)}$ -double bond. In most higher plants, a C-24 cationic intermediate arising from the methylation would be neutralized by elimination of C-28 hydrogen to form a C₂₉- $\Delta^{24(28)}$ -sterol. We have recently reported that this methylation reaction proceeds in a '*trans*' mechanism, although the face of the transfer of the methyl group remains undefined.¹ In some families of plants and green algae, the C-24 cationic intermediate is neutralized by the migration of hydrogen from C-25 to C-24 with concomitant elimination of C-26 hydrogen to yield a 24β-ethyl- Δ^{25} -sterol such as clerosterol (1). The subsequent reduction of Δ^{25} yields a 24β -ethyl sterol such as 22-dihydrochondrillasterol in *Cucurbitaceae*² and clionasterol in algae.³ *Ajuga* genus (*Laviatae*) is known to have clerosterol and 22-dehydroclerosterol.⁴ We previously reported the mechanism of sterol side-chain biosynthesis in hairy roots of *Ajuga reptans* var. *atropurpurea.*⁵ The C-24 hydrogen of desmosterol was shown to reside at the C-24 position of 1 in the hairy roots. Further, it was established that the isopropylidene (*E*) (derived from C-2 of mevalonate) and (*Z*) (derived from C-6 of mevalonate) methyl groups of desmosterol become stereospecifically olefinic methyl and exomethylene carbons, respectively, via (pro-*S*)- and (pro-*R*)-methyls at

Scheme 1. Two possible steric courses of the methylation of 24-methylene-sterol. ● designates carbon atoms derived from C-2 of mevalomate.

Keywords: steroids and sterols; clerosterol; clionasterol; biosynthesis; ²H NMR; stereochemistry.

^{*} Corresponding author. Tel.: +00 81 3 5734 2241; fax: +00 81 3 5734 2241; e-mail: fujimoto@cms.titech.ac.jp

^{0040-4039/02/\$ -} see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(02)01061-4

C-25 of 24-methylenecholesterol (2). This implies that migration of 25-H has to occur from the 24-*re*-face of the $\Delta^{24(28)}$ -double bond, as depicted in Scheme 1.⁶ We have now elucidated the steric course (path a or b in Scheme 1) of the transfer of the methyl group from *S*-adenosylmethionine.

To elucidate the steric course in question, it is essential to differentiate the C-28 methylene hydrogens of **1**. In our previous work, the differentiation of the C-28 methylene hydrogens of sitosterol (C-24 epimer of clionasterol) was uniquely achieved.⁷ Thus, we initially focused on assigning the C-28 methylene hydrogens of clionasterol (**3**) instead of **2**, since **2** could be readily converted into **3** by selective hydrogenation.⁸ The methylene protons of **3** were found to be much more diagnostic from each other in the ¹H NMR spectrum than those (δ 1.24 for pro-*R*, δ 1.28 for pro-*S*) of sitosterol, as evidenced by the HMQC spectrum of **3** (ca. δ 1.11 and 1.31). In order to assign the ¹H chemical shifts of the methylene hydrogens, [28-pro-*R*-²H]- and [28-pro-*S*-²H]-clionasterols were prepared as shown in Scheme 2.

The known (24*S*,28*S*)-6β-methoxy-3,5-*cyclo*-5α-stigmastan-28-ol (**4a**)^{7,9} was converted into mesylate which was then reduced by Super-deuteride to give [28-pro-R-²H]cycloether. The use of Super-deuteride was found to be superior to NaBD₄, since the formation of olefinic byproducts was much reduced.⁷ The ether was converted to [28-pro-R-²H]-clionasterol (**3a**)¹⁰ in a standard acidic treatment. Starting from the epimeric (28*R*)-28-ol (**4b**),^{7,11} there obtained [28-pro-*S*-²H]-clionasterol (**3b**).¹² The ²H NMR spectra of these reference samples showed signals at δ 1.32 for **3a** and 1.14 for **3b**, as illustrated in Fig. 1.

Scheme 2. Synthesis of [28-pro-R-²H]- and [28-pro-S-²H]clionasterols (**3a** and **3b**). *Reagents and conditions*: (i) MsCl, Py; (ii) Super-deuteride, THF; *m*CPBA (separation of olefinic byproducts as epoxides), 65–70% for two steps; (iii) *p*-TsOH, aq. dioxane, 85%.

Hence, pro-*R* and pro-*S* hydrogens at C-28 of **3** were unequivocally assigned to the signals of δ 1.31 and 1.11, respectively.

The requisite $[28E^{-2}H]^{-}$ (1a) and $[28Z^{-2}H]^{-}$ (1b) 24methylenecholesterols were synthesized as described previously.¹ Compound 1a (32 mg) was fed to *Ajuga* hairy roots (four 500 ml flasks each containing 250 ml of MS medium) as described previously.⁵ Extraction and purification of the sterol fraction furnished 1.6 mg of clerosterol. This was hydrogenated in the presence of Pt/C to give clionasterol in good yield. Compound 1b was similarly fed to *Ajuga* hairy roots and the biosynthesized clerosterol was converted to clionasterol. Fig. 2 illustrates the ²H NMR spectra of the clionasterol samples. The spectra A and B are essentially identical to those of [28-pro-*R*-²H]- and [28-pro-*S*-²H]-clionasterols, respectively. This implies that 28*E*- and 28*Z*-hydrogens of 1

Figure 1. ²H NMR spectra (61 MHz, CHCl₃) of [28-pro-*R*-²H]-clionasterol 3a (A) and [28-pro-*S*-²H]-clionasterol 3b (B).

Figure 2. 2 H NMR spectra (61 MHz, CHCl₃) of clionasterol. (A) 3 derived from clerosterol biosynthesized from 1a. (B) 3 derived from clerosterol biosynthesized from 1b.

become C-28 pro-*R*- and pro-*S*-hydrogens, respectively, of **2**.

In conclusion, it has been established that the transfer of the methyl group from S-adenosylmethionine to C_{28} - $\Delta^{24(28)}$ sterol takes place from the 28-*si* face (path b in Scheme 1) in *Ajuga* hairy roots. This work is the first to determine the steric course of the methyl transfer in the conversion of C_{28} - to C_{29} -sterol. In *Ajuga* hairy roots, the transfer of the methyl group in the conversion of C_{27} - to C_{28} -sterol, e.g. from desmosterol to codisterol (24 β methyl- Δ^{25} -cholesterol), proceeds from the 24-*si* face of $\Delta^{24(25)}$ double bond.⁵ Therefore, it appears that the methyl group of S-adenosylmethionine may be held in the backside of the $\Delta^{24(25)}$ and $\Delta^{24(28)}$ double bond in both methyl transfer reactions.

Acknowledgements

We thank Drs. T. Matsumoto and N. Tanaka, Bioassay Laboratory, Research Center, Daicel Chemical Industries Ltd., for providing *Ajuga* hairy root cultures.

References

- Okuzumi, T.; Kaji, Y.; Hamada, H.; Fujimoto, Y. Tetrahedron Lett. 2000, 41, 3623–3626.
- (a) Bolger, L. M.; Rees, H. H.; Ghisalberti, E. L.; Goad, L. J.; Goodwin, T. W. *Biochem. J.* **1970**, *118*, 197–200; (b) Seo, S.; Uomori, A.; Yoshimura, Y.; Takeda, K.; Seto, H.; Ebizuka, Y.; Noguchi, H.; Sankawa, U. J. Chem. Soc., Perkin Trans. 1 **1989**, 1969–1974; (c) Uomori, A.; Seo, S.; Iwatani, K.; Nakagawa, Y.; Takeda, K.; Sankawa, U. Phytochemistry **1992**, *31*, 3861–3864.
- (a) Tomita, Y.; Uomori, A.; Sakurai, E. *Phytochemistry* 1971, 10, 573–577; (b) Goad, L. J.; Goodwin, T. W. *Phytochemistry* 1977, 16, 1931–1933; (c) Wilkomirski, B. W.; Goad, L. J. *Phytochemistry* 1983, 22, 929–932.
- Camps, F.; Coll, J.; Cortel, A. An. Quim., Ser. C 1983, 79, 228–229.
- Yagi, Y.; Morisaki, M.; Kushiro, T.; Yoshida, H.; Fujimoto, Y. *Phytochemistry* **1996**, *41*, 1057–1064.
- 6. Although nothing is known about whether the process is

concerted or stepwise, the stereochemical discussion in the text is applicable even in a non-concerted process.

- Okuzumi, T.; Hara, N.; Fujimoto, Y. *Tetrahedron Lett.* 1999, 40, 8863–8866.
- Rubinstein, R.; Goad, L. J. Phytochemistry 1974, 13, 485–487.
- Compound 4a: oil, ¹H NMR (300 MHz, CDCl₃) δ: 0.43 (1H, dd, J=7.9, 5.3 Hz, 4eq-H), 0.64 (1H, t, J=5.3 Hz, 4ax-H), 0.72 (3H, s, 18-H₃), 0.90 (3H, d, J=6.6 Hz, 26-H₃), 0.94 (3H, d, J=6.8 Hz, 27-H₃), 0.95 (3H, d, J=6.3 Hz, 21-H₃), 1.02 (3H, s, 19-H₃), 1.18 (3H, d, J=6.3 Hz, 29-H₃), 2.77 (1H, m, 6-H), 3.32 (3H, s, OMe), 3.94 (1H, m, 28-H).
- 10. Compound **3a**: mp 136–138°C; ¹H NMR (400 MHz, CDCl₃) δ : 0.680 (3H, s, 18-H₃), 0.811 (3H, d, J=6.8 Hz, 26-H₃), 0.832 (3H, d, J=6.8 Hz, 27-H₃), 0.848 (3H, d, J=6.4 Hz, 29-H₃), 0.927 (3H, d, J=6.8 Hz, 21-H₃), 1.010 (3H, s, 19-H₃), 3.53 (1H, m, 3-H), 5.35 (1H, brd, J=5.6 Hz, 6-H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.86 (C-18), 12.21 (C-29), 18.83 (C-21), 18.96 (C-27), 19.39 (C-19), 19.63 (C-26), 21.08 (C-11), 24.31 (C-15), 26.37 (C-23), 28.24 (C-16), 28.95 (C-25), 31.67 (C-2), 31.91 (C-7), 31.91 (C-8), 33.90 (C-22), 36.27 (C-20), 36.51 (C-10), 37.26 (C-1), 39.78 (C-12), 42.31 (C-4), 42.31 (C-13), 45.97 (C-24), 50.14 (C-9), 56.03 (C-17), 56.77 (C-14), 71.82 (C-3), 121.72 (C-6), 140.77 (C-5). A signal of C-28 (δ 23.1 for non-labeled compound) was negligible.
- 11. Compound **4b**: oil, ¹H NMR (300 MHz, CDCl₃) δ : 0.43 (1H, dd, J=8.0, 5.3 Hz, 4eq-H), 0.65 (1H, t, J=5.3 Hz, 4ax-H), 0.71 (3H, s, 18-H₃), 0.89 (3H, d, J=6.8 Hz, 26-H₃), 0.91 (3H, d, J=7.1 Hz, 27-H₃), 0.94 (3H, d, J=6.6 Hz, 21-H₃), 1.02 (3H, s, 19-H₃), 1.18 (3H, d, J=6.3 Hz, 29-H₃), 2.77 (1H, m, 6-H), 3.33 (3H, s, OMe), 3.80 (1H, m, 28-H).
- 12. Compound **3b**: mp 137–139°C; ¹H NMR (400 MHz, CDCl₃) δ : 0.680 (3H, s, 18-H₃), 0.812 (3H, d, J=6.8 Hz, 26-H₃), 0.830 (3H, d, J=7.6 Hz, 27-H₃), 0.847 (3H, d, J=6.0 Hz, 29-H₃), 0.926 (3H, d, J=6.4 Hz, 21-H₃), 1.010 (3H, s, 19-H₃), 3.53 (1H, m, 3-H), 5.35 (1H, brd, J=5.6 Hz, 6-H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.85 (C-18), 12.19 (C-29), 18.83 (C-21), 18.99 (C-27), 19.39 (C-19), 19.58 (C-26), 21.08 (C-11), 24.31 (C-15), 26.35 (C-23), 28.23 (C-16), 28.94 (C-25), 31.67 (C-2), 31.91 (C-7), 31.91 (C-8), 33.93 (C-22), 36.27 (C-20), 36.51 (C-10), 37.26 (C-1), 39.78 (C-12), 42.31 (C-4), 42.31 (C-13), 45.97 (C-24), 50.14 (C-9), 56.03 (C-17), 56.77 (C-14), 71.82 (C-3), 121.72 (C-6), 140.76 (C-5). A signal of C-28 was negligible.